
April 26–29, 2004 • Hyatt Regency Dallas
www.motorola.com/sndf

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin
Sr. SW Engineer

CPD Applications Engineering

H1119 - Introduction to
AltiVec - Ten easy ways
to Vectorize your code

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 2

What is a Vector Architecture?

• A vector architecture allows the simultaneous processing of multiple data
items in parallel

• Operations are performed on multiple data elements by a single
instruction
– Referred to as Single Instruction Multiple Data (SIMD) parallel

processing

VB

VT

VA

VC

op op op op op op op op

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 3

What is AltiVec?

• SIMD extension to PowerPC Architecture
– … no tradeoffs … just additions

• Provides a high-performance RISC microprocessor with DSP-like
compute power
– Allows highly parallel operations for the simultaneous execution of up to 16

operations in a single clock cycle
• Offers a programmable solution for controller and signal processing

functions
– …which can easily migrate via software upgrades to follow changing

standards and customer requirements

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 4

AltiVec’s Vector Execution Unit

• Concurrent with PowerPC integer and floating-point units
• Separate, dedicated 32 128-bit vector registers
• Approximately 11% of the silicon area
• No penalty for mixing integer, floating point and AltiVec operations

Cache / Memory

Dispatch

FPU Vector UnitIU
FPRs Vector Register File GPRs

32 64 128In
st

ru
ct

io
n

St
re

am

128 bits6432

PowerPC
Execution Flow

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 5

SIMD Intra-element Instructions

VB

VT

VA

VC

op op op op op op op op op op op op op op op op

VB

VT

VA

VC

op op op op op op op op

VB

VT

VA

VC

op op op op

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 6

AltiVec Instruction Set Features

• 162 new instructions added to the PowerPC ISA
– Intra and inter-element arithmetic instructions
– Intra and inter-element conditional instructions
– Powerful Permute, Shift and Rotate, Splat, Pack/Unpack and Merge instructions

• 4-operand, non-destructive instructions
– Up to three source operands and a single destination operand
– Supports advanced “multiply-add/sum” and permute primitives

• All instructions fully pipelined with single-cycle throughput
– Simple ops: 1 cycle latency
– Compound ops: 3-4 cycle latency
– No restriction on issue with scalar instructions

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 7

Enabling AltiVec in your applications

• Let Compiler do the job
– Currently there are no practical Autovectorizers out-there
– It is a guess how much performance will be actually extracted
– and they still require certain expertise to work with

• Using C intrinsic
– There is a standardized list of intrinsics supported in all PowerPC enabled compilers
– Can actually guarantee good level of control, up to the level of register assignment

• Using Assembly Language programming
– The most effective, and the most laborious way
– Can provide 100% performance extraction

April 26–29, 2004 • Hyatt Regency Dallas
www.motorola.com/sndf

The ways…

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 9

Method 0 – Where to start

• There are two possible starting points:
– Mathematical description of the algorithm
– Existing C code written for serial execution

• Designing algorithms in Vector form from scratch is the best approach…
• … but the practice shows that much more often it is not the case

– Most of the time starting point is C code written for “serial” execution
• C code is an excellent starting point

– It guarantees model execution
• … but you should remember that vectorization is not trivial

– Vectorized code often needs completely different approach
• Finally set your goals clear

– Do you want the fastest code possible?
– Do you want the most compact code possible?
– Combination of both?

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 10

Method 1 – Beware of your Bottlenecks
• One of the first things to realize is whether the algorithm is Compute or I/O bound

– If the code entirely bounded by memory performance it would not help to reduce the
latency of computations

– If the code is computation intensive, we probably want to reduce that latency and
then revisit memory bandwidth

– If the code is control intensive, it might not be the best candidate for vectorization
unless you can use predication and convert control dependency to data
dependency
or you can use MULTICHANNEL processing

• If memory is the bottleneck the question is –
– Is it streaming data case (system bus is the bottleneck)
– … or is it cache resident scenario (same data processed more than once, and then

flushed back to main memory)
• If system bus is the bottleneck…

– Is it saturated?
The theoretical 60x bus throughput is 640 Mbytes/sec @ 100MHz
The theoretical MPX bus throughput is 800 Mbytes/sec @ 100MHz

– If you have already reached your bus capacity, and you are sure you are doing just
the necessary work – what else can you do?

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 11

Method 1 – Beware of your Bottlenecks

• If we are dealing with cache resident data, you should strongly consider using
AltiVec

– AltiVec has FOUR TIMES the bandwidth
One vector load brings 128 bit of data
One FP load - 64 bit
Once scalar load only 32 bit

– Beware, that there is no direct “link” between GPRs and Vector Registers (VRs)
– To “copy” a value between the two you need to store-load it

This means that you do need to keep majority of computations in one place
– One exception from this rule is memcpy/memmove/memset kind of operation

If you copy large amounts of data between two locations, it might be useful to use
AltiVec just as a transport manager

• If computations are the critical path…
– Is there true data dependency between values being computed?
– If there is not, you could be almost certain that AltiVec will deliver performance

improvement

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 12

Method 2 – Look at the loops

• The easiest way to reduce computation latency is to restructure loops
– This is the main optimization performed by autovectorizers

• Loop Unrolling
– Do multiple iterations in one pass

• Change the amount of computations in the loop
– Traditionally you might want to remove loop invariant computations from the

loops and do several smaller loops as opposed to single large one…
– But paradoxically it might sometimes HELP to move MORE computations into

loops

int res[n],a[n],b[n];

for (i=0; i<n; i++){
res[i] = a[i] + b[i];

}

int res[n],a[n],b[n];

for (i=0; i<n/4; i+=4){
res[i] = a[i] + b[i];
res[i+1] = a[i+1] + b[i+1];
res[i+2] = a[i+2] + b[i+2];
res[i+3] = a[i+3] + b[i+3];

}

vector int vres[q_n],va[g_n],vb[q_n];

// q_n == n/4
for (i=0; i<q_n; i+=4){

vres[i] = vec_add(va[i],vb[i]);
}

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 13

Method 3 – Look at data dependency

• True Data dependency is often preventing vectorization
– as well as some classical code optimizations

• But in some cases it could be eliminated
• Let us consider Dot Product of two Matrixes

– X,Y vectors size N

int DotProduct(int *X, int *Y, int length){
int temp = 0;

// N Iterations
for(int i = 0; i < length; i++) {

temp = X[i]*Y[i] + temp;
}

return temp;
}

∑
=

=
n

i
iyixnynx

1
][*][])[],[(tDot_Produc

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 14

Method 3 – Look at data dependency

• Same function could be written in vector form
– Note that v1 and v2 are size of N/4
– so is the “length” == four times fewer iterations

int VectorDotProduct(vector int *v1, vector int *v2, int length){
vector int temp = (vector int) vec_splat_u32(0);
int result;
// Loop over the length of the vectors multiplying like terms and summing
// Number of iterations is N/4
for(int i = 0; i < length; i++)

temp = vec_madd(v1[i], v2[i], temp);
// Still have four ints splat across a vector
// Add across the vector
temp = vec_add(temp, vec_sld(temp, temp, 4)); // Vector Shift Left Double
temp = vec_add(temp, vec_sld(temp, temp, 8));
vec_ste(temp, 0, &result);

return result;
}

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 15

Method 3 – Look at data dependency

• But is this the best possible way of doing it?
– vec_madd takes 4 cycles to complete…

int VectorDotProduct(vector int *v1, vector int *v2, int length){
vector int temp = (vector int) vec_splat_u32(0);
int result;
// Loop over the length of the vectors multiplying like terms and summing
// Number of iterations is N/4
for(int i = 0; i < length; i++)

temp = vec_madd(v1[i], v2[i], temp); // true data dependency
// only 1 madd every 4 cycles

temp = vec_add(temp, vec_sld(temp, temp, 4)); // Vector Shift Left Double
temp = vec_add(temp, vec_sld(temp, temp, 8));
vec_ste(temp, 0, &result);

return result;
}

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 16

Method 3 – Look at data dependency

• Now eliminate the data dependency…
int FastVectorDotProduct(vector float *v1, vector float *v2, int length){

vector float temp = (vector float) vec_splat_s8(0);
vector float temp2 = temp; vector float temp3 = temp;
vector float temp4 = temp; vector float result;
for(int i = 0; i < length; i += 4){ //Loop over the length of the vectors,

temp = vec_madd(v1[i], v2[i], temp); //this time doing 4 vectors in parallel
temp2 = vec_madd(v1[i+1], v2[i+1], temp2); // to fill the pipeline
temp3 = vec_madd(v1[i+2], v2[i+2], temp3);
temp4 = vec_madd(v1[i+3], v2[i+3], temp4);

}
//Sum our temp vectors
temp = vec_add(temp, temp2);
temp3 = vec_add(temp3, temp4);
temp = vec_add(temp, temp3);
//Add across the vector
temp = vec_add(temp, vec_sld(temp, temp, 4));
temp = vec_add(temp, vec_sld(temp, temp, 8));
//Copy the result to the stack so we can return it via the IPU
vec_ste(temp, 0, &result);
return result;

}
Many thanks to Ian Ollmann

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 17

Method 4 – Look at your Data Layout

• Often algorithm calls for loading of blocks of data in certain order
– Images (pixels orders) are good example
– Let us look at RGB to YCbCr conversion

1 1 1 2 2 2 10 10 10 11 11
11 12 12 12 13 13 21 21 2120 22

23 23 23 32 32 3222 22 24 31 31

Layout 1

1 2 8 1 8 1 8 9 10 16
9 10 16 9 16 17 24 16 17 24
16 17 24 25 32 25 32 25 26 32

Layout 2
1 2 14 15 16 1 2 3 4 16
1 2 14 15 16 17 18 19 20 32
17 18 30 31 32 17 18 19 20 32

Layout 3

…

… … …

… … …..

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 18

Method 4 – Look at your Data Layout

• One vector load from Layout 1 yields this:

• One solution (and maybe the only) is to get 3 vectors worth, and then use
vec_perm instruction

1 1 1 2 2 2 5 5 5 6

1 1 1 2 2 2

15 16
6 6 7 7 11 11
11 16 1612

3 3 3 4 4
8 8 87 9

13 13 1312 12

4 5 5
9 9 10

14 14 14

5 6
10 10

15 15

0 3 6 9 12 15
2 5 8 11 x x

18 21 1 4 7
17 20 2414 x

10 13 16
x x x

19 22
x x

1 2 3 4 5 6
1 2 3 4 x x

7 8 1 2 3
6 7 85 x

4 5 6
x x x

7 8
x x

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 19

Method 4 – Look at your Data Layout

• One vector load from Layout 2 yields 16 bytes of one “color”

• Which means that only three vector loads will yield 16 full pixels
– In three vector registers

• This is the fastest way to get data “in” BUT only if processing is done on “chars”
and no extra precision is needed

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 20

Method 4 – Look at your Data Layout

• The actual formula for RGB to YCbCr conversion is:

• Which is equivalent to…

• Which needs 16 bits precision for accurate computation…

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 21

Method 4 – Look at your Data Layout

• This could be done by “unpacking” bytes to shorts:

• vec_unpack_2sh and vec_unpack_2sl

• On which the computations are performed… and packed back to bytes by
vec_packsu()

• This means that by “reverse engineering” the necessary order of bytes back to
memory we will get Layout3, so there is no need for permute instructions after
vector loads

1 2 3 4 5 6
1 2 3 4 x x

7 8 1 2 3
6 7 85 x

4 5 6
x x x

7 8
x x

1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8

1 2 8 1 8 1 8 9 10 16
9 10 16 9 16 17 24 16 17 24
16 17 24 25 32 25 32 25 26 32

… … …..

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 22

Method 4 – Look at your Data Layout

• Do the global Data Layout analysis
– Caches are only working well on data streams which exhibit spatial and time locality
– Remember that two vector loads == one cache line

If loading from multiple cache lines, do one load from each line, then go back and
load the second half (also works for scalar access)
Do not group too many loads and stores

– 8-16 vector stores in a row can overflow CSQ (completed store queue) and
cause processor to stall

– but remember store merging – put two stores to the same cache line together
• See if “in place” computations are possible

– sometimes reduces memory traffic in half

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 23

Method 5 – Look at the Data Types

• Similarly to the optimization method 4 we can see that Data Type analysis can
affect algorithm mapping

• In addition to “normal” or forward data type analysis…
– If you multiply two bytes, you better use short as result

• … there could be a “reverse” data analysis
– If the actual precision of the result being used is LESS then the precision provided by

extended data types, maybe simple rounding will suffice
• A good example of this rule is use of double precision floating point in many

embedded algorithms
– Often original algorithms are developed for “generic” conditions, which might not meet

exact use of the algorithm in this specific instance
– In this case it is a variation of the Method 0 – know (profile) your application and

possible data set

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 24

Method 5 – Look at the Data Types

• One case of data type consideration (and partially data layout) is aligning allocated
data to quad word boundaries

– Different compilers have different means of achieving it, but all of them DO
Here is GCC example…

• In this example every variable of data type LongVector will be aligned on quad-
word boundaries and 8bitBuf is already aligned

• Data Alignment is absolutely critical for mapping algorithms on AltiVec

typedef union{
vector unsigned int vec;
int elements[4];

}LongVector __attribute__ ((aligned (16))) ;

unsigned char 8bitBuf[] __attribute__ ((aligned (16))) ={
#include "attribute_table.txt"
};

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 25

Method 5 – Look at the Data Types
• Why?

For a series of array elements: A0, A1, A2, A3

A0

v00 v01

v10

A0 A1A0,&A0
v01

v10

v00

,v00,v01,v02
v02

,&A1
,&A0

lvx
lvx
lvsl
vperm

A0

v00 v01

A1 A2

A1

A3A2

A3

A0

A0

A2

A2

A1

A1

A3

v02
A0

A1

A2

A3

vT
⇒

⇒

⇒

⇒

(v10-v13)
,&A0v00lvx

v01

v10 ,v00,v01,v02
v02

,&A1
,&A0

v00 ,&A2
v11 ,v01,v00,v02
v01 ,&A3
v12 ,v00,v01,v02
v00 ,&(A3+16)
v13 ,v01,v00,v02

lvx
lvsl
vperm
lvx

lvx

lvx

vperm

vperm

vperm

0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70 0x80 0x90 0xA0

A0 A1 A2 A3

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 26

Method 5 – Look at the Data Types

• Loading Unaligned Data requires getting twice (or more) the data you really need

vector unsigned char vectorLoadUnaligned(vector unsigned char *v){
vector unsigned char permuteVector = vec_lvsl(0, (int*) v);
vector unsigned char low = vec_ld(0, v);
vector unsigned char high = vec_ld(16, v);
return vec_perm(low, high, permuteVector);

}

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 27

Method 5 – Look at the Data Types

• Store Unaligned Data is even ‘better’ ...
– You need to LOAD in order to be able to Store!

void vectorStoreUnaligned(vector unsigned char v, vector unsigned char *where){
vector unsigned char permuteVector = vec_lvsr(0, (int*) where);
vector unsigned char low,high,tmp,mask;
vector signed char ones = vec_splat_s8(-1);
vector signed char zeroes = vec_splat_s8(0);

vector unsigned char low = vec_ld (0, where); //Load the surrounding area
vector unsigned char high = vec_ld (16, where);
//Make a mask for which parts of the vectors to swap out
mask = vec_perm(zeros, ones, permuteVector);
tmp = vec_perm(tmp, tmp, permuteVector); //Right rotate our input data
low = vec_sel(tmp, low, mask); // Insert masked data to aligned vector
high = vec_sel(high, v, mask);

vec_st (low, 0, where); //Store aligned results
vec_st (high, 16, where);

}

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 28

Method 6 – Eliminate Branching

• You cannot proceed at full speed unless you know exactly where you are going…
• When processor encounters a branch instruction, and condition data is not

available processor guesses…
– And if it guessed wrong, it will back track to the decision point and start over

• There are some general guidelines on how processor will guess…
– Static branch prediction: Forward branch – not taken, backward branch is taken

Which means in if-then-else place LIKELY section in “then”
– Dynamic branch prediction – after one or two invocations of the same branch

instructions enough HISTORY is accumulated to make good prediction next time
around…

But branch predictor is vulnerable to aliasing…
• Try to avoid branches even if it means more computations – it is likely to be faster!

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 29

Method 6 – Eliminate Branching

int Max(int a, int b) {
int result;
if(a < b) result = b;
else result = a;
return result;

}

//Return the maximum of two vector integers: result = (a & ~mask) | (b & mask);
vector signed int Max(vector signed int a, vector signed int b){

vector bool int mask = vec_cmplt (a, b); //If (a < b)...
vector signed int result = vec_sel(a, b, mask); //Select a or b
return result;

}

• A simple example of finding maximum of two numbers
– Assuming it is used to compare two arrays

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 30

Method 6 – Eliminate Branching

• Some compare instructions write their results to integer unit registers
– vec_any_xx() functions that return 1 if any element satisfies the test
– vec_all_xx() functions that return 1 if all of the elements in the vector satisfy the

test
//Return true if the second and third floats in v are greater than 0.0
Boolean AreSecondAndThirdElementsPositive(vector float v){

vector unsigned int compare = (vector unsigned int)(QNaN, 0, 0, QNaN);
return vec_all_nle(v, (vector float) compare);

}

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 31

Method 7 – Look at Memory data rate

• Memory bandwidth is the natural (and actually desirable) limit of
productivity for I/O based applications

– If it is a streaming application we are mainly talking about system bus
throughput

Maximum Actual 60x bus throughput is about 640 Mbytes/sec @ 100MHz
Maximum Actual MPX bus throughput is about 800 Mbytes/sec @ 100MHz

– If we are reusing data already fetched, we are probably dealing with Cache
hierarchy

Approximate L1 cache scalar throughput is around 3.7 Gbytes/sec @ 1GHz
AltiVec provides 4x the bandwidth accessing it at 15 GBytes/sec @ 1GHz

• For the case when system bus is the bottleneck, we need to guarantee that it is
used all the time

– In AltiVec it is achieved with Data Stream Touch instruction (dstx)
• For the cases when we mainly depend on Cache performance, we need to improve

locality and eliminate unnecessary requests
– This is done in part with careful layout
– and dcba/dcbt instructions

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 32

Method 7 – Look at Memory data rate

• AltiVec allows up to four prefetch streams, independent and
asynchronous

– addressed by a two bit ID tag
– Vec_dst(a,b,c); where a is initial address, b is control constant, c is ID tag

1 2 3 N Memory

Block Size = 0-32 Vectors

Stride = ±32KBytes

0-256 Blocks

Data Stream Prefetch
Inst. Dispatch

DST

Select

Bus

VTQ

Data
Stream
Engine

Data
Stream
Engine

Load/
Store
Unit

Load/
Store
Unit

Data
Cache
Data

Cache
Data
MMU
Data
MMU

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 33

Method 7 – Look at Memory data rate

• One to four cache streams could be set using
– vec_dst (Data Stream Touch for load) and…
– vec_dstst (Vector Data Stream Touch for Store == load+store)

• Transient variants vec_dstt() and vec_dststt()
– Mark their blocks to be flushed straight to RAM instead of L2 and L3 caches

• Use vec_dst() and vec_dstt() just to read a block of data
• Use vec_dstst() and vec_dststt() to read and modify a block of data
• Do not use prefetch for write only

– All writes go into a Store Miss Merge Queue
– When making two adjacent vector stores to the same cache line, they could be

merged into one cache line store, so no memory read is needed
This is also more efficient then using dcbz (less an instruction)

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 34

Method 7 – Look at Memory data rate

• Prefetch thread is a low priority process
– There are multiple events that can delay or stop prefetch

• Prefetch streams will also stop silently if they step on memory that is either
unmapped or would cause a protection violation

• Prefetch engine could be shared by user and OS

Block 1

Block 2

Block 3

Block 4

Block 5

Loop
Iteration

1

2

3

4

5
Memory Address

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 35

Method 7 – Look at Memory data rate

• To improve Cache dependent case, we might want to “help” it
– AltiVec is capable of ‘hinting’ Cache on future usage of data

• vec_ldl() and vec_stl() (Vector Load/Store Indexed LRU) mark the new cache blocks
as those least recently used

– They will be the first to be flushed when more space in the cache is needed
– They also mark their cache blocks as transient, which means that they will be flushed

directly to memory rather than take up space in the L2
• Next step is to use cache management instructions – dcba/dcbt/dcbz

– dcba (Data Cache Block Allocate) – allocates cache block without fetching it from
memory

this is telling Cache “I will soon store into this cache block”
– dcbt (Data Cache Block Touch) – fetches the cache block from memory

this means “I will soon load from this location”
– dcbz (Data Cache Block Clear to Zero) – same as dcba, but zeroes out allocated

block
• There are many more dcbx instructions for a variety of scenarios

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 36

Method 8 – Get rid of memory accesses…

• If you do not like it… do not do it!
• All the color conversions do the simple calculation for each color of output space

using values of colors from input space
– cmyk_ycck_convert() from GNU GhostScript
– The equation looks like the following

OutColor1 = C1 * InColor1 + C2 * InColor2 + C3 * InColor3
– where C1, C2 and C3 are the constants

• To speed up the calculation original GNU code uses the pre calculated table to
exchange C1 * InColor1 with Table[InColor1]

– The same trick is used to limit range of the output value (to one byte length)
• AltiVec version calculate the output value “as is” using original equation and

“mradd” instructions.
– It is match faster than memory byte access operations
– And we do such calculation for eight pixels simultaneously

• The result is 5x Faster…

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 37

Method 8 – Get rid of memory accesses…

while (--num_rows >= 0) {
…
for (col = 0; col < num_cols; col++) {

r = MAXJSAMPLE - GETJSAMPLE(inptr[0]);
g = MAXJSAMPLE - GETJSAMPLE(inptr[1]);
b = MAXJSAMPLE - GETJSAMPLE(inptr[2]);
/* K passes through as-is */
outptr3[col] = inptr[3];
inptr += 4;
/* Y */
outptr0[col] = ((ctab[r+R_Y_OFF] + ctab[g+G_Y_OFF] + ctab[b+B_Y_OFF]) >> SCALEBITS);
/* Cb */
outptr1[col] = ((ctab[r+R_CB_OFF] + ctab[g+G_CB_OFF] + ctab[b+B_CB_OFF]) >> SCALEBITS);
/* Cr */
outptr2[col] = ((ctab[r+R_CR_OFF] + ctab[g+G_CR_OFF] + ctab[b+B_CR_OFF]) >> SCALEBITS);

}
}

• GNU optimized implementation with Lookup Table

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 38

Method 8 – Get rid of memory accesses…
while (--num_rows >= 0) {

source0 = vec_ld(0, inptr);
for (col = 0; col < num_cols; source0 = source4, col+=16) {

…
/* Perform 16-bit arithmetic conversion of R,G,B to Y,Cb,Cr

Y = 0.29900 * R + 0.58700 * G + 0.11400 * B
Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B + CENTERJSAMPLE
Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B + CENTERJSAMPLE */

y0 = vec_mradds(ss_ry, r0, vec_mradds(ss_gy, g0, vec_mradds(ss_by, b0, ss_zero)));
y1 = vec_mradds(ss_ry, r1, vec_mradds(ss_gy, g1, vec_mradds(ss_by, b1, ss_zero)));
cb0 = vec_mradds(ss_rcb, r0, vec_mradds(ss_gcb, g0, vec_mradds(ss_bcb, b0, ss_center)));
cb1 = vec_mradds(ss_rcb, r1, vec_mradds(ss_gcb, g1, vec_mradds(ss_bcb, b1, ss_center)));
cr0 = vec_mradds(ss_rcr, r0, vec_mradds(ss_gcr, g0, vec_mradds(ss_bcr, b0, ss_center)));
cr1 = vec_mradds(ss_rcr, r1, vec_mradds(ss_gcr, g1, vec_mradds(ss_bcr, b1, ss_center)));

/* Pack results into 8-bit format and store to non-interleaved data streams:
output arrays are aligned, but the size of the image
could be unaligned with vector size (num_cols % 16 != 0) ! */

y = vec_packsu(y0, y1);
cb = vec_packsu(cb0, cb1);
cr = vec_packsu(cr0, cr1);
…
*outptr0++ = y;
*outptr1++ = cb;
*outptr2++ = cr;
*outptr3++ = k;

}
}

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 39

Method 9 – Get rid of computations…

• Well, the same idea, do not like it, don’t do it…
– You have some control over where the bottleneck is, so move it around a bit

• Data slicing is a very effective technique to be used in AltiVec
• It is best explained with an example
• Let’s consider Byte-wise Bit Reversal algorithm

– For each byte return bit reversal version of the input:

unsigned char reverse (unsigned char in){
unsigned char out = ((in & 0x01)<<7) |

((in & 0x02) <<5) |
((in & 0x04) <<3) |
((in & 0x08) <<1) |
((in & 0x10) >>1) |
((in & 0x20) >>3) |
((in & 0x40) >>5) |
((in & 0x80) >>7);

return out;
}

• This straightforward method yields 0.10 Bytes/Cycle

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 40

Method 9 – Get rid of computations…

• Alternative implementation could be Big Lookup Table:
– 256 entry byte table holding the “reversed” values
– So, the computation for each byte is converted into a single “load”

reversed[j] = big_lookup[in[i]];
unsigned char big_lookup[256] = {

0x00,0x80,0x40,0xc0,0x20,0xa0,0x60,0xe0,0x10,0x90,0x50,0xd0,0x30,0xb0,0x70,0xf0,
0x08,0x88,0x48,0xc8,0x28,0xa8,0x68,0xe8,0x18,0x98,0x58,0xd8,0x38,0xb8,0x78,0xf8,
0x04,0x84,0x44,0xc4,0x24,0xa4,0x64,0xe4,0x14,0x94,0x54,0xd4,0x34,0xb4,0x74,0xf4,
0x0c,0x8c,0x4c,0xcc,0x2c, 0xac,0x6c,0xec,0x1c,0x9c,0x5c,0xdc,0x3c,0xbc,0x7c,0xfc,
0x02,0x82,0x42,0xc2,0x22,0xa2,0x62,0xe2,0x12,0x92,0x52,0xd2,0x32,0xb2,0x72,0xf2,
0x0a,0x8a,0x4a,0xca,0x2a,0xaa,0x6a,0xea,0x1a,0x9a,0x5a,0xda,0x3a,0xba,0x7a,0xfa,
0x06,0x86,0x46,0xc6,0x26,0xa6,0x66,0xe6,0x16,0x96,0x56,0xd6,0x36,0xb6,0x76,0xf6,
0x0e,0x8e,0x4e,0xce,0x2e,0xae,0x6e,0xee,0x1e,0x9e,0x5e,0xde,0x3e,0xbe,0x7e,0xfe,
0x01,0x81,0x41,0xc1,0x21,0xa1,0x61,0xe1,0x11,0x91,0x51,0xd1,0x31,0xb1,0x71,0xf1,
0x09,0x89,0x49,0xc9,0x29,0xa9,0x69,0xe9,0x19,0x99,0x59,0xd9,0x39,0xb9,0x79,0xf9,
0x05,0x85,0x45,0xc5,0x25,0xa5,0x65,0xe5,0x15,0x95,0x55,0xd5,0x35,0xb5,0x75,0xf5,
0x0d,0x8d,0x4d,0xcd,0x2d,0xad,0x6d,0xed,0x1d,0x9d,0x5d,0xdd,0x3d,0xbd,0x7d,0xfd,
0x03,0x83,0x43,0xc3,0x23,0xa3,0x63,0xe3,0x13,0x93,0x53,0xd3,0x33,0xb3,0x73,0xf3,
0x0b,0x8b,0x4b,0xcb,0x2b,0xab,0x6b,0xeb,0x1b,0x9b,0x5b,0xdb,0x3b,0xbb,0x7b,0xfb,
0x07,0x87,0x47,0xc7,0x27, 0xa7,0x67,0xe7,0x17,0x97,0x57,0xd7,0x37,0xb7,0x77,0xf7,
0x0f, 0x8f,0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef, 0x1f, 0x9f, 0x5f, 0xdf,0x3f,0xbf,0x7f,0xff

};

• This method yields 0.19 Bytes/Cycle or 2x faster then original

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 41

Method 9 – Get rid of computations…

• Another method is Small Lookup Table
– based on splitting each byte into two nibbles
– looking up values for both of them independently, and merging result later

unsigned char small_lookup_l[16] __attribute__ ((aligned (16))) = {
0x00,0x08,0x04,0x0c,0x02,0x0a,0x06,0x0e,0x01,0x09,0x05,0x0d,0x03,0x0b,0x07,0x0f

};

unsigned char small_lookup_h[16] __attribute__ ((aligned (16))) = {
0x00,0x80,0x40,0xc0,0x20,0xa0,0x60,0xe0,0x10,0x90,0x50,0xd0,0x30,0xb0,0x70,0xf0

};

reversed[j] = small_lookup_l[(in[j]&0xf0)>>4] | small_lookup_h[(in[j]&0x0f)];

• This method uses less memory, but runs a bit slower: 0.11 Bytes/Cycle

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 42

Method 9 – Get rid of computations…

• The true advantages comes from observation that small tables will fit into two
ALtiVec registers…

• … and ALL lookups are completely independent, so 16 of them could be performed
in parallel !!!
void reverse_vector(vector unsigned char *in,vector unsigned char *out, int num_elements){

int i;
vector unsigned char st_l, st_h;
vector unsigned char four = vec_splat_u8(4);
vector unsigned char v_in,vl,vh, v_out;

st_l = vec_ld (0,(vector unsigned char *) small_lookup_l);
st_h = vec_ld (0,(vector unsigned char *) small_lookup_h);

for(i=0; i<num_elements; i+=16){
v_in = vec_ld (i,in);
vh = vec_sr(v_in,four);
vh = vec_perm(st_l,st_l,vh);
vl = vec_perm(st_h,st_h,v_in);
v_out = vec_or(vh,vl);
vec_st(v_out,i,out);

}

• This method for the same
conditions gets

– 2.7 Bytes/Cycle

• It is 30x faster then
original Scalar

• …and 15x faster then
BigLookupTable

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 43

Method 10 – Constant Generations

• Often a “standard” C declaration of an initialized variable is interpreted by compiler
as declare + store…

• In this case it is much more practical to generate these constants

• These are trivial cases, but what about “fancy” constants…

vector signed int zero_vec_32 = { 0,0,0,0 };
vector float zero_vec_fp = { 0.0,0.0,0.0,0.0 };

vector signed int zero_vec_32 = vec_splat_s32(0);
vector float zero_vec_fp = vec_ctf(vec_splat_u32(0), 0));

// Vector Convert from Fixed-Point Word

vector float vec_neg_zero(void){ //Generate a vector full of –0.0.
vector unsigned int result = vec_splat_u32(-1); // Vector Splat
return (vector float) vec_sl(result, result); // Vector Shift Left

}

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 44

Method 10 – Constant Generations

• A very common reason for constant generation is their use for vector permute
instruction vector unsigned char

vectorLoadUnaligned(vector unsigned char *v){
vector unsigned char permuteVector =

vec_lvsl(0, v);
vector unsigned char low = vec_ld(0, v);
vector unsigned char high = vec_ld(16, v);
return vec_perm(low, high, permuteVector);

}

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 45

Method 10 – Constant Generations

• But there are number of cases that are much more complex…

vector unsigned char vec_perm1 =
(vector unsigned char){0,1,2,3,16,17,18,19,4,5,6,7,20,21,22,23};

vector unsigned char a = vec_lvsl(0, 0);
vector unsigned char b = vec_lvsr(0, 0);
vector unsigned char vec_perm1 =

(vector unsigned char)vec_mergeh((vector unsigned int)a, (vector unsigned int)b);

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 46

Method 10 – Constant Generations
00: (1) splat 00
01: (1) splat 01
02: (1) splat 02
03: (1) splat 03
04: (1) splat 04
05: (1) splat 05
06: (1) splat 06
07: (1) splat 07
08: (1) splat 08
09: (1) splat 09
0A: (1) splat 0A
0B: (1) splat 0B
0C: (1) splat 0C
0D: (1) splat 0D
0E: (1) splat 0E
0F: (1) splat 0F
10: (2) splat 08, add self
11: (3) splat 02, splat 0F, add together
12: (2) splat 09, add self
13: (3) splat 04, splat 0F, add together
14: (2) splat 0A, add self
15: (3) splat 06, splat 0F, add together
16: (2) splat 0B, add self
17: (3) splat 08, splat 0F, add together
18: (2) splat 0C, add self
19: (3) splat 0A, splat 0F, add together
1A: (2) splat 0D, add self
1B: (3) splat 0C, splat 0F, add together
1C: (2) splat 0E, add self
1D: (3) splat 0E, splat 0F, add together
1E: (2) splat 0F, add self
1F: (2) splat FB, srl self
20: (3) splat 01, splat 05, rol by
21: (3) splat 09, splat 05, rol by
22: (3) splat 04, rol self, average signed
23: (3) splat F2, sl self, rol by
24: (3) splat 09, splat 02, rol by
25: (4) splat 06; splat FB, srl self; add together
26: (4) splat 07; splat FB, srl self; add together
27: (3) splat 0D, add self, add together
28: (2) splat 0A, rol self
29: (4) splat 01; splat 0A, rol self; add together
2A: (3) splat 0E, add self, add together
2B: (3) splat F3, srl self, subtract
2C: (3) splat 0B, splat 02, rol by
2D: (3) splat 0F, add self, add together
2E: (3) splat F2, srl self, add together
2F: (3) splat F2, splat 04, rol by
30: (3) splat 03, splat 04, rol by
31: (4) splat 09; splat 0A, rol self; add together
32: (3) splat 0A, rol self, add together
33: (3) splat 0C, rol self, nor together
34: (3) splat 0D, splat 02, rol by
35: (3) splat F1, srl self, average signed
36: (4) splat 0E; splat 0A, rol self; add together
37: (3) splat F3, add self, rol by
38: (3) splat 07, splat 03, rol by
39: (3) splat F2, add self, srl by
3A: (3) splat FA, rol self, srl by
3B: (3) splat F6, add self, rol by
3C: (2) splat F2, srl self
3D: (3) splat F4, splat 06, rol by
3E: (2) splat FA, srl self
3F: (3) splat F3, splat 04, rol by
40: (2) splat 04, rol self
41: (3) splat 05, splat 06, rol by
42: (3) splat 09, splat 06, rol by
43: (3) splat 0D, splat 06, rol by
44: (3) splat 04, rol self, add together
45: (3) splat 07, rol self, average unsigned
46: (4) splat 06; splat 04, rol self; add together
47: (3) splat 0E, sl self, average unsigned
48: (3) splat 09, splat 03, rol by
49: (3) splat 0E, rol self, average unsigned
4A: (3) splat F2, srl self, subtract
4B: (3) splat 0F, rol self, average unsigned
4C: (3) splat 0C, rol self, subtract
4D: (3) splat 0B, rol self, subtract
4E: (3) splat F2, add self, rol self
4F: (2) splat F4, rol self
50: (3) splat 05, splat 04, rol by
51: (4) splat 02; splat F4, rol self; add together
52: (3) splat 0D, rol self, nor together
53: (3) splat 05, rol self, average unsigned
54: (3) splat F3, rol self, subtract
55: (3) splat F5, sl self, subtract
56: (4) splat 07; splat F4, rol self; add together
57: (3) splat 0D, rol self, average unsigned
58: (2) splat 0B, rol self
59: (4) splat 01; splat 0B, rol self; add together
5A: (3) splat 05, rol self, nor together
5B: (3) splat 0B, rol self, or together
5C: (4) splat 04; splat 0B, rol self; add together
5D: (3) splat F5, add self, rol by
5E: (3) splat F2, splat 05, rol by
5F: (3) splat F5, splat 04, rol by

60: (3) splat 03, splat 05, rol by
61: (3) splat 0B, splat 05, rol by
62: (4) splat 0A; splat 0B, rol self; add together
63: (3) splat 0B, rol self, add together
64: (4) splat 0C; splat 0B, rol self; add together
65: (3) splat 05, rol self, subtract
66: (3) splat 0C, rol self, average unsigned
67: (3) splat F3, sl self, nor self
68: (3) splat 0D, splat 03, rol by
69: (3) splat F1, srl self, add together
6A: (4) splat F1, srl self; splat F2; add together
6B: (3) splat F3, sl self, xor together
6C: (3) splat 0D, rol self, subtract
6D : (3) splat 0D, sl self, subtract
6E: (4) splat F1, srl self; splat F6; add together
6F: (3) splat F6, splat 04, rol by
70: (3) splat 07, splat 04, rol by
71: (3) splat F1, add self, srl by
72: (3) splat 0E, sl self, subtract
73: (4) splat F1, srl self; splat FB; add together
74: (4) splat F1, srl self; splat FC; add together
75: (3) splat 0E, rol self, subtract
76: (3) splat F6, sl self, add together
77: (3) splat F7, add self, rol by
78: (2) splat F1, srl self
79: (3) xor self, splat F1, average unsigned
7A: (3) xor self, splat F3, average unsigned
7B: (3) xor self, splat F5, average unsigned
7C: (2) splat F9, srl self
7D : (3) xor self, splat F9, average unsigned
7E: (3) xor self, splat FB, average unsigned
7F: (3) xor self, splat FD, average unsigned
80: (2) splat 06, sl self
81: (2) splat 06, rol self
82: (3) splat 04, cmpeq self, average unsigned
83: (2) splat 07, rol self
84: (3) splat 08, cmpeq self, average unsigned
85: (3) splat 0A, cmpeq self, average unsigned
86: (3) splat 0C, cmpeq self, average unsigned
87: (2) splat 0F, rol self
88: (3) splat F1, splat 03, sl by
89: (3) splat F7, sl self, subtract
8A: (3) splat 07, rol self, add together
8B: (3) splat 0E, rol self, subtract
8C: (4) splat 05; splat 0F, rol self; add together
8D : (3) splat 0E, rol self, xor together
8E: (3) splat F4, add self, rol by
8F: (3) splat F1, splat 03, rol by
90: (3) splat 09, splat 04, rol by
91: (3) splat 0E, rol self, add together
92: (3) splat F3, rol self, add together
93: (3) splat F2, add self, rol by
94: (3) splat 0D, rol self, subtract
95: (3) splat F5, sl self, add together
96: (3) splat 0F, rol self, add together
97: (3) splat F2, splat 03, rol by
98: (2) splat F3, sl self
99: (4) splat 01; splat F3, sl self; add together
9A: (3) splat F4, sl self, average unsigned
9B: (3) splat 05, rol self, subtract
9C: (3) splat FA, srl self, average unsigned
9D : (3) splat FD, sl self, add together
9E: (3) splat F4, splat 05, rol by
9F: (2) splat F3, rol self
A0: (2) splat 05, rol self
A1: (2) splat 0D, rol self
A2: (3) splat F4, rol self, average unsigned
A3: (3) splat FA, sl self, rol by
A4: (3) splat 0B, rol self, nor together
A5: (3) splat 05, rol self, add together
A6: (4) splat 05; splat 0D, rol self; add together
A7: (3) splat F4, splat 03, rol by
A8: (3) splat F5, splat 03, sl by
A9: (4) splat 08; splat 0D, rol self; add together
AA: (4) splat 09; splat 0D, rol self; add together
AB: (3) splat F5, sl self, subtract
AC: (3) splat 0D, rol self, xor together
AD: (3) splat 0D, rol self, or together
AE: (3) splat 0D, rol se lf, add together
AF: (3) splat F5, splat 03, rol by
B0: (3) splat 0B, splat 04, rol by
B1: (4) splat F6, rol self; splat F4; add together
B2: (4) splat F6, rol self; splat F5; add together
B3: (3) splat 0B, rol self, subtract
B4: (3) splat 0C, rol self, subtract
B5: (3) splat F1, srl self, average unsigned
B6: (3) splat F2, srl self, subtract
B7: (3) splat F6, splat 03, rol by
B8: (3) splat F7, splat 03, sl by
B9: (3) splat F3, add self, rol self
BA: (3) splat F2, sl self, add together
BB: (3) splat 04, rol self, nor together
BC: (3) splat F2, splat 06, rol by
BD : (2) splat F6, rol self
BE: (2) splat F5, rol self
BF: (2) splat FD, rol self

C0: (2) splat 0C, rol self
C1: (3) splat 07, splat 06, rol by
C2: (3) splat 0B, splat 06, rol by
C3: (3) splat 0F, splat 06, rol by
C4: (3) splat F1, splat 02, sl by
C5: (3) splat F1, add self, rol by
C6: (3) splat F1, rol self, sl by
C7: (3) splat F1, splat 02, rol by
C8: (2) splat F2, sl self
C9: (3) splat 0E, rol self, average signed
CA: (4) splat 02; splat F2, sl self; add together
CB: (2) splat F2, rol self
CC: (3) splat F3, splat 02, sl by
CD: (4) splat 02; splat F2, rol self; add together
CE: (3) splat F2, srl self, xor together
CF: (2) splat FC, rol self
D0: (3) splat 0D, splat 04, rol by
D1: (4) splat 02; splat FC, rol self; add together
D2: (4) splat 03; splat FC, rol self; add together
D3: (3) splat F4, splat 02, rol by
D4: (3) splat F5, splat 02, sl by
D5: (3) splat 0A, rol self, nor together
D6: (3) splat F2, add self, add together
D7: (3) splat F5, splat 02, rol by
D8: (2) splat FB, sl self
D9: (3) splat F3, add self, add together
DA: (3) splat F5, rol self, average signed
DB: (3) splat F6, splat 02, rol by
DC: (3) splat F7, splat 02, sl by
DD: (3) splat F2, sl self, average signed
DE: (3) splat F6, splat 05, rol by
D F: (2) splat FB, rol self
E0: (2) splat F0, add self
E1: (3) splat F0, splat F1, add together
E2: (2) splat F1, add self
E3: (2) splat F1, rol self
E4: (2) splat F2, add self
E5: (3) splat F0, splat F5, add together
E6: (2) splat F3, add self
E7: (3) splat F0, splat F7, add together
E8: (2) splat F4, add self
E9: (3) splat F0, splat F9, add together
EA: (2) splat F5, add self
EB: (2) splat FA, rol self
EC: (2) splat F6, add self
ED: (3) splat F0, splat FD, add together
EE: (2) splat F7, add self
EF: (3) splat F0, cmpeq self, add together
F0: (1) splat F0
F1: (1) splat F1
F2: (1) splat F2
F3: (1) splat F3
F4: (1) splat F4
F5: (1) splat F5
F6: (1) splat F6
F7: (1) splat F7
F8: (1) splat F8
F9: (1) splat F9
FA: (1) splat FA
FB: (1) splat FB
FC: (1) splat FC
FD : (1) splat FD
FE: (1) splat FE
FF: (1) splat FF

00: (1) splat 00
01: (1) splat 01
...
10: (2) splat 08, add self
11: (3) splat 02, splat 0F, add together
12: (2) splat 09, add self
…
3D: (3) splat F4, splat 06, rol by
3E: (2) splat FA, srl self
3F: (3) splat F3, splat 04, rol by
…
B1: (4) splat F6, rol self; splat F4; add together
B2: (4) splat F6, rol self; splat F5; add together
B3: (3) splat 0B, rol self, subtract
…
FE: (1) splat FE
FF: (1) splat FF

32 sequences consist of 1 instruction
44 sequences consist of 2 instructions
152 sequences consist of 3 instructions
28 sequences consist of 4 instructions

Many thanks to Holger Bettag

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 47

Put it all together

• Step back and take a 10,000 foot view
• There is a logical sequence to be observed in implementation of these methods…

– One can look at the optimization process as on moving the bottleneck around the
processor –

if computation takes longer then anything else – speed them up
if system bus is underutilized – use prefetching
if bus is 100% full, computations are at the minimum… reduce the code and data
size?

• But the truly superior goal is to reach computational entropy –
– get rid of all the unnecessary computations through algorithm modifications
– and balance added memory bandwidth with real data I/O
– use predictability of the data streams to the full extent

• Concentrate your effort, in large applications work with 10% of the code which
accounts for 90% of execution time

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 48

General Coding Strategy

• Use Vector algorithms
– Aim for high throughput

• Align your Data
– 16 bytes
– Never hurts scalar code
– Keep all data in close proximity

Helps to improve memory performance
– Try not to mix different data types in the same vector

• Do more work
– On a cold cache assume having 40 cycles for each 32byte chunk of data
– You are likely to achieve TOP performance when processing time exactly equal to the

fetch time
– Use prefetch and ‘hinting’ instructions

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 49

More ways…

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 50

AltiVec Library Offering
– Telecomm

FFT/IFFT, FIR, Autocorrelation, Convolution Encoder/Viterbi Decoder (GSM,3G),
Error Correction Codes (CRC 8,12,16,24)
Voice Over IP (G723, G729) elements

– MultiMedia
DCT/IDCT, MPEG2, MPEG4, H.26x, AC3, MP3, JPEG/JPEG 2000,
Quantization/Dequantization, SAD
Voice Recognition, Pattern Recognition,

– Printer
GhostScript Library elements, Color Management routines, Color Conversion
(RGB to YCbCr), Scaling/Rotation, Filtering routines, FS Dithering

– Networking
OSPF, QOS, NAT, Route Lookup, IP Reassembly, TCP/IP,
Encryption (AES, DES, 3DES, MD5, SHA, RSA, Kasumi)
Wireless network (802.11), LZO

– LibC (means could be “Linked” at compilation)
Link level support for standard C functions (memcpy, strcmp etc.)

– Mathematical primitives (Extension of LibC+)
Matrix math, LargeNumber Lib
Math.h - Log, Exp, Sin, Cos, Sqrt

– OS enablement
Linux (TCP/IP),
VxWorks elements

Legend
Green color - available on the AV web site now

(motorola.com/altivec)
Orange color - available upon request
Light blue - available soon

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 51

To summarize:
• AltiVec™ Technology transparently adds

SIMD functionality to a high speed RISC
engine

• AltiVec enables a broad range of embedded
and computing applications

• C level programming offers certain level of
comfort while providing powerful way to
extract parallelism from applications

• You must think in terms of Vector
Processing throughout design cycle of an
application

– AltiVec is not a pixie dust to be sprinkled
on an existing code

• Given that – 2x-4x-11x speedup is possible

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 52

MPC7400

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 53

MPC7450

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2004

Sergei Larin April 05, 2004
Freescale Semiconductor General Business Information Slide 54

60x vs. MPX
• Bandwidth

• PCI I/O

